□-SUBSTITUENT EFFECTS AND NON-BONDING ELECTRON INTERACTIONS AT THE S_N 2 TRANSITION STATE, AN <u>AB-INITIO</u> STUDY.

Daniel Kost* and Kalman Aviram Department of Chemistry, Ben Gurion University of the Negev Beer Sheva, Israel

Abstract The trend in reactivity observed for methyl-, methylene-, and methoxymethyl-chlorides is rationalized in terms of turning on and off the four electron repulsion, at the transition state, between a lone pair on the substituent and a π orbital along the reaction coordinate

Despite extensive studies of the S_N^2 reaction in solution, in the gas phase, and by application of molecular orbital $(MC)^3$ and valence bond $(VB)^4$ theories, some fundamental observations are not yet fully understood. These include the trend in reactivity towards nucleophiles found in the series CH30CH2 Cl > CH 3Cl > CH 2Cl2, which is the subject of the present study

While methyl chloride reacts readily with nucleophiles in the $S_{\rm M}2$ mechanism, the replacement of one of its hydrogens by chlorine in methylene chloride results in a dramatic decrease in $S_N 2$ reactivity ⁵ If instead of chlorine the equally electronegative oxygen replaces one of the hydrogens of methyl chloride, the resulting methoxymethyl chloride shows greatly enhanced reactivity towards nucleophiles, in both the $\rm S_N$ 1 and $\rm S_N$ 2 mechanisms $^{5-6}$

We submit that the major interaction responsible for the deactivating effect of an lphachlorine substituent (X = Cl in Equation 1) is the four-electron repulsion between a p-lone pair on chlorine with the high lying, π -type orbital (HOMO-1) associated with the reaction coordinate at the S_{N} 2 transition state (Fig. 1a). The different behaviour of the methoxy substituent

derives from its ability to adopt a geometry in which the p-lone pair orbital on oxygen is

TABLE. Calculated 4-31G Activation Energies (Kcal/mol) for the ${\rm S}_{N}^{}2$ Reaction.

For definitions of (a), (b), (c), and (d) see text.

Subst X (geometry)	Activation E	Energy (b)	Isodesmic E ¹ (c)	ΔE(TS) (d)
Н	48 8	57.3	0 0	
NH ₂ (off)	44 7	59.2	4.1	11.3
NH ₂ (on)	56.0	70.4	-7. 2	
BH ₂ (off)	51.6	58 6	- 2 9	-28.7
BH ₂ (on)	22.9	29 8	25.9	
OH(off)	41 8	-	7.0	11.7
OH(on)	53.5	-	-2 8	

 $^{^{1}}$ Positive values express a stabilizing effect of X on TS relative to H.

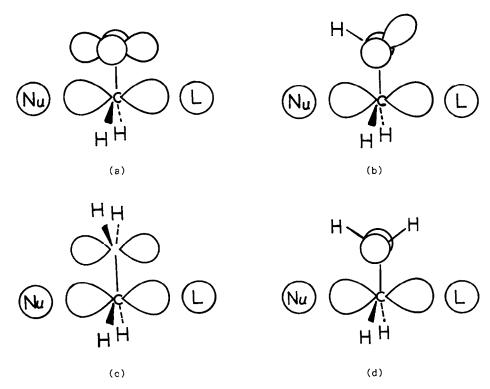


FIGURE 1 Schematic representation of MO interactions at the S_N^2 TS· (a) X = halogen, (b) X OR, (c) X = planar NH₂, BH₂ in "on" geometry, (d) X = planar NH₂, BH₂ in "off" geometry.

perpendicular to the reaction coordinate orbitals, and overlap repulsion is minimized (Fig 1b). The other lone pair of electrons on oxygen does not effect similar repulsion because it has substantial s character, and hence is both lower in energy as well as less suitable for π -overlap than the p-lone pair.

To demonstrate these ideas we carried out $\underline{ab-initio}$ SCF-MO calculations on a model S_N^2 identity reaction (Equation 1, $Nu = LG = H^-$), with different α -substituents X. In the model reaction hydride serves both as nucleophile and leaving group. While such a model is not expected to yield reliable activation energies, it nevertheless will produce the right \underline{trend} in activation energies as X groups are changed.

We have used planar NH_2 and BH_2 as model substituents in order to test directly the effect of a p-lone pair or a vacant p-orbital on transition state (TS). These groups offer the advantage that their π interaction with the reaction coordinate orbitals can be turned on and off at will, by rotation about the C-X bond (Fig. 1c,d). The effect has been analyzed in terms of four methods: (a)comparison of activation energies taken as differences between TS energy and reactants' energy { $\Delta E = E_{TS} - (E_{GS} + E_{H} -)$ }; (b)activation energies taken as $\Delta E = E_{TS} - E_{complex}$, where the complex is the optimized minimum energy structure when H is moved towards CH_3X ; (c) the effect of X on TS and GS, relative to X = H, as measured by the isodesmic reaction (Equation 2); and (d) the change in TS energy when X is rotated by 90° from on to off geometry

$$CH_{5}^{-} + CH_{3}X \longrightarrow CH_{4} + CH_{4}X^{-} + \Delta E$$
 (2)

All structures in Equation 2 and in the Table represent fully optimized geometries at the 4-31G level, 10 the only constraint being ${\rm C_{2V}}$ symmetry of the TS1, and planarity of NH $_2$ and BH $_2$ The results are shown in the Table. 2 Clearly, a very strong effect is observed in any one of the methods, where turning on the repulsive π interaction of planar NH $_2$ (or OH) strongly raises the activation barrier. Conversely, in X = BH $_2$ turning on the π interaction produces a stabilizing, two electron interaction, manifest in the dramatic lowering of the S $_{\rm N}$ 2 barrier.

Acknowledgments. We thank Professor Saul Wolfe for stimulating discussions which eventually led to this study. Support by the Israel Commission for Basic Research is gratefully acknowledged.

References and Notes

For leading references see (1-4)

- W. J. Albery and M M Kreevoy, <u>Advan. Phys. Org. Chem.</u>, <u>16</u>, 85 (1978).
- ² J. H. Bowle, Acc. Chem. Res., 13, 76 (1980).
- S Wolfe, D J. Mitchell, and H B Schlegel, J. Am Chem. Soc., 103, 7692, 7694 (1981).
- S. S. Shark and A. Pross, <u>1b1d</u>, <u>104</u>, 2708 (1982).
- J Hine, "Physical Organic Chemistry", McCraw-Hill, New York 1962, p.176
- It has been argued that electronegative substituents on the central carbon decrease the reactivity towards nucleophiles However, under strict S_N^2 reaction conditions the substituted benzyl chlorides $X-C_6H_4CH_2Cl$ show <u>increased</u> rates of displacement when substituted with electron withdrawing groups (Hammett reaction constant $\rho=0.8$).7
- P. R. Young and W. P. Jencks, J. Am. Chem. Soc., 101, 3288 (1979).
- The GAUSSIAN 70 system of programs was used. W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, QCPE 236, Indiana University
- W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc., 92, 4796 (1970).
- R Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys , 54, 724 (1971)
- With the exception of X = OH, where only the bonds between axial hydrogens and carbon were kept equal
- 12 X = C1 could not be included in the Table due to difficulties in optimization at the 4-31G level. This transition state tends to decompose to CH_{4} and X^{-}

(Received in UK 9 July 1982)